crux_core/capability/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
//! Capabilities provide a user-friendly API to request side-effects from the shell.
//!
//! Typically, capabilities provide I/O and host API access. Capabilities are external to the
//! core Crux library. Some are part of the Crux core distribution, others are expected to be built by the
//! community. Apps can also build single-use capabilities where necessary.
//!
//! # Example use
//!
//! A typical use of a capability would look like the following:
//!
//! ```rust
//!# use url::Url;
//!# use crux_core::Command;
//!# const API_URL: &str = "";
//!# pub enum Event { Increment, Set(crux_http::Result<crux_http::Response<usize>>) }
//!# #[derive(crux_core::macros::Effect)]
//!# pub struct Capabilities {
//!# pub render: crux_core::render::Render<Event>,
//!# pub http: crux_http::Http<Event>,
//!# }
//!# #[derive(Default)] pub struct Model { count: usize }
//!# #[derive(Default)] pub struct App;
//!#
//!# impl crux_core::App for App {
//!# type Event = Event;
//!# type Model = Model;
//!# type ViewModel = ();
//!# type Capabilities = Capabilities;
//!# type Effect = Effect;
//! fn update(&self, event: Self::Event, model: &mut Self::Model, caps: &Self::Capabilities) -> Command<Effect, Event> {
//! match event {
//! //...
//! Event::Increment => {
//! model.count += 1;
//! caps.render.render(); // Render capability
//!
//! let base = Url::parse(API_URL).unwrap();
//! let url = base.join("/inc").unwrap();
//! caps.http.post(url).expect_json().send(Event::Set); // HTTP client capability
//! }
//! Event::Set(_) => todo!(),
//! }
//! Command::done()
//! }
//!# fn view(&self, model: &Self::Model) {
//!# unimplemented!()
//!# }
//!# }
//! ```
//!
//! Capabilities don't _perform_ side-effects themselves, they request them from the Shell. As a consequence
//! the capability calls within the `update` function **only queue up the requests**. The side-effects themselves
//! are performed concurrently and don't block the update function.
//!
//! In order to use a capability, the app needs to include it in its `Capabilities` associated type and `WithContext`
//! trait implementation (which can be provided by the `crux_core::macros::Effect` macro). For example:
//!
//! ```rust
//! mod root {
//!
//! // An app module which can be reused in different apps
//! mod my_app {
//! use crux_core::{capability::CapabilityContext, App, render::{self, Render, RenderOperation}, Command, Request};
//! use crux_core::macros::Effect;
//! use serde::{Serialize, Deserialize};
//!
//! #[derive(Default)]
//! pub struct MyApp;
//! #[derive(Serialize, Deserialize)]
//! pub struct Event;
//!
//! // The `Effect` derive macro generates an `Effect` type that is used by the
//! // Shell to dispatch side-effect requests to the right capability implementation
//! // (and, in some languages, checking that all necessary capabilities are implemented)
//! #[derive(Effect)]
//! pub struct Capabilities {
//! pub render: Render<Event>
//! }
//!
//! impl App for MyApp {
//! type Model = ();
//! type Event = Event;
//! type ViewModel = ();
//! type Capabilities = Capabilities;
//! type Effect = Effect;
//!
//! fn update(&self, event: Event, model: &mut (), caps: &Capabilities) -> Command<Effect, Event> {
//! render::render()
//! }
//!
//! fn view(&self, model: &()) {
//! ()
//! }
//! }
//! }
//! }
//! ```
//!
//! # Implementing a capability
//!
//! Capabilities provide an interface to request side-effects. The interface has asynchronous semantics
//! with a form of callback. A typical capability call can look like this:
//!
//! ```rust,ignore
//! caps.ducks.get_in_a_row(10, Event::RowOfDucks)
//! ```
//!
//! The call above translates into "Get 10 ducks in a row and return them to me using the `RowOfDucks` event".
//! The capability's job is to translate this request into a serializable message and instruct the Shell to
//! do the duck herding and when it receives the ducks back, wrap them in the requested event and return it
//! to the app.
//!
//! We will refer to `get_in_row` in the above call as an _operation_, the `10` is an _input_, and the
//! `Event::RowOfDucks` is an event constructor - a function, which eventually receives the row of ducks
//! and returns a variant of the `Event` enum. Conveniently, enum tuple variants can be used as functions,
//! and so that will be the typical use.
//!
//! This is what the capability implementation could look like:
//!
//! ```rust
//! use crux_core::{
//! capability::{CapabilityContext, Operation},
//! };
//! use crux_core::macros::Capability;
//! use serde::{Serialize, Deserialize};
//!
//! // A duck
//! #[derive(Serialize, Deserialize, Clone, PartialEq, Eq, Debug)]
//! struct Duck;
//!
//! // Operations that can be requested from the Shell
//! #[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq)]
//! enum DuckOperation {
//! GetInARow(usize)
//! }
//!
//! // Respective outputs for those operations
//! #[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq)]
//! enum DuckOutput {
//! GetInRow(Vec<Duck>)
//! }
//!
//! // Link the input and output type
//! impl Operation for DuckOperation {
//! type Output = DuckOutput;
//! }
//!
//! // The capability. Context will provide the interface to the rest of the system.
//! #[derive(Capability)]
//! struct Ducks<Event> {
//! context: CapabilityContext<DuckOperation, Event>
//! };
//!
//! impl<Event> Ducks<Event> {
//! pub fn new(context: CapabilityContext<DuckOperation, Event>) -> Self {
//! Self { context }
//! }
//!
//! pub fn get_in_a_row<F>(&self, number_of_ducks: usize, event: F)
//! where
//! Event: 'static,
//! F: FnOnce(Vec<Duck>) -> Event + Send + 'static,
//! {
//! let ctx = self.context.clone();
//! // Start a shell interaction
//! self.context.spawn(async move {
//! // Instruct Shell to get ducks in a row and await the ducks
//! let ducks = ctx.request_from_shell(DuckOperation::GetInARow(number_of_ducks)).await;
//!
//! // Unwrap the ducks and wrap them in the requested event
//! // This will always succeed, as long as the Shell implementation is correct
//! // and doesn't send the wrong output type back
//! if let DuckOutput::GetInRow(ducks) = ducks {
//! // Queue an app update with the ducks event
//! ctx.update_app(event(ducks));
//! }
//! })
//! }
//! }
//! ```
//!
//! The `self.context.spawn` API allows a multi-step transaction with the Shell to be performed by a capability
//! without involving the app, until the exchange has completed. During the exchange, one or more events can
//! be emitted (allowing a subscription or streaming like capability to be built).
//!
//! For Shell requests that have no output, you can use [`CapabilityContext::notify_shell`].
//!
//! `DuckOperation` and `DuckOutput` show how the set of operations can be extended. In simple capabilities,
//! with a single operation, these can be structs, or simpler types. For example, the HTTP capability works directly with
//! `HttpRequest` and `HttpResponse`.
pub(crate) mod channel;
mod executor;
mod shell_request;
mod shell_stream;
use futures::{Future, Stream, StreamExt as _};
use serde::de::DeserializeOwned;
use std::sync::Arc;
pub(crate) use channel::channel;
pub(crate) use executor::{executor_and_spawner, QueuingExecutor};
use crate::{command::CommandOutput, Command, Request};
use channel::Sender;
/// Operation trait links together input and output of a side-effect.
///
/// You implement `Operation` on the payload sent by the capability to the shell using [`CapabilityContext::request_from_shell`].
///
/// For example (from `crux_http`):
///
/// ```rust,ignore
/// impl Operation for HttpRequest {
/// type Output = HttpResponse;
/// }
/// ```
pub trait Operation: serde::Serialize + Clone + PartialEq + Send + 'static {
/// `Output` assigns the type this request results in.
type Output: serde::de::DeserializeOwned + Send + Unpin + 'static;
}
/// A type that can be used as a capability operation, but which will never be sent to the shell.
/// This type is useful for capabilities that don't request effects.
/// For example, you can use this type as the Operation for a
/// capability that just composes other capabilities.
///
/// e.g.
/// ```rust
/// # use crux_core::capability::{CapabilityContext, Never};
/// # use crux_core::macros::Capability;
/// #[derive(Capability)]
/// pub struct Compose<E> {
/// context: CapabilityContext<Never, E>,
/// }
/// # impl<E> Compose<E> {
/// # pub fn new(context: CapabilityContext<Never, E>) -> Self {
/// # Self { context }
/// # }
/// # }
///
/// ```
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub enum Never {}
/// Implement `Operation` for `Never` to allow using it as a capability operation.
impl Operation for Never {
type Output = ();
}
/// Implement the `Capability` trait for your capability. This will allow
/// mapping events when composing apps from submodules.
///
/// Note that this implementation can be generated by the `crux_core::macros::Capability` derive macro.
///
/// Example:
///
/// ```rust
/// # use crux_core::{Capability, capability::{CapabilityContext, Operation}};
/// # pub struct Http<Ev> {
/// # context: CapabilityContext<HttpRequest, Ev>,
/// # }
/// # #[derive(Clone, serde::Serialize, serde::Deserialize, PartialEq, Eq)] pub struct HttpRequest;
/// # impl Operation for HttpRequest {
/// # type Output = ();
/// # }
/// # impl<Ev> Http<Ev> where Ev: 'static, {
/// # pub fn new(context: CapabilityContext<HttpRequest, Ev>) -> Self {
/// # Self { context }
/// # }
/// # }
/// impl<Ev> Capability<Ev> for Http<Ev> {
/// type Operation = HttpRequest;
/// type MappedSelf<MappedEv> = Http<MappedEv>;
///
/// fn map_event<F, NewEvent>(&self, f: F) -> Self::MappedSelf<NewEvent>
/// where
/// F: Fn(NewEvent) -> Ev + Send + Sync + 'static,
/// Ev: 'static,
/// NewEvent: 'static,
/// {
/// Http::new(self.context.map_event(f))
/// }
/// }
/// ```
pub trait Capability<Ev> {
type Operation: Operation + DeserializeOwned;
type MappedSelf<MappedEv>;
fn map_event<F, NewEv>(&self, f: F) -> Self::MappedSelf<NewEv>
where
F: Fn(NewEv) -> Ev + Send + Sync + 'static,
Ev: 'static,
NewEv: 'static + Send;
#[cfg(feature = "typegen")]
fn register_types(generator: &mut crate::typegen::TypeGen) -> crate::typegen::Result {
generator.register_type::<Self::Operation>()?;
generator.register_type::<<Self::Operation as Operation>::Output>()?;
Ok(())
}
}
/// Allows Crux to construct app's set of required capabilities, providing context
/// they can then use to request effects and dispatch events.
///
/// `new_with_context` is called by Crux and should return an instance of the app's `Capabilities` type with
/// all capabilities constructed with context passed in. Use `Context::specialize` to
/// create an appropriate context instance with the effect constructor which should
/// wrap the requested operations.
///
/// Note that this implementation can be generated by the derive macro `crux_core::macros::Effect`.
///
/// ```rust
/// # #[derive(Default)]
/// # struct App;
/// # pub enum Event {}
/// # #[allow(dead_code)]
/// # pub struct Capabilities {
/// # http: crux_http::Http<Event>,
/// # render: crux_core::render::Render<Event>,
/// # }
/// # pub enum Effect {
/// # Http(crux_core::Request<<crux_http::Http<Event> as crux_core::capability::Capability<Event>>::Operation>),
/// # Render(crux_core::Request<<crux_core::render::Render<Event> as crux_core::capability::Capability<Event>>::Operation>),
/// # }
/// # #[derive(serde::Serialize)]
/// # pub enum EffectFfi {
/// # Http(<crux_http::Http<Event> as crux_core::capability::Capability<Event>>::Operation),
/// # Render(<crux_core::render::Render<Event> as crux_core::capability::Capability<Event>>::Operation),
/// # }
/// # impl crux_core::App for App {
/// # type Event = Event;
/// # type Model = ();
/// # type ViewModel = ();
/// # type Capabilities = Capabilities;
/// # type Effect = Effect;
/// # fn update(&self, _event: Self::Event, _model: &mut Self::Model, _caps: &Self::Capabilities) -> crux_core::Command<Effect, Event> {
/// # unimplemented!()
/// # }
/// # fn view(&self, _model: &Self::Model) -> Self::ViewModel {
/// # unimplemented!()
/// # }
/// # }
/// # impl crux_core::Effect for Effect {
/// # type Ffi = EffectFfi;
/// # fn serialize(self) -> (Self::Ffi, crux_core::bridge::ResolveSerialized) {
/// # match self {
/// # Effect::Http(request) => request.serialize(EffectFfi::Http),
/// # Effect::Render(request) => request.serialize(EffectFfi::Render),
/// # }
/// # }
/// # }
/// impl crux_core::WithContext<Event, Effect> for Capabilities {
/// fn new_with_context(
/// context: crux_core::capability::ProtoContext<Effect, Event>,
/// ) -> Capabilities {
/// Capabilities {
/// http: crux_http::Http::new(context.specialize(Effect::Http)),
/// render: crux_core::render::Render::new(context.specialize(Effect::Render)),
/// }
/// }
/// }
/// ```
pub trait WithContext<Ev, Ef> {
fn new_with_context(context: ProtoContext<Ef, Ev>) -> Self;
}
/// An interface for capabilities to interact with the app and the shell.
///
/// To use [`update_app`](CapabilityContext::update_app), [`notify_shell`](CapabilityContext::notify_shell)
/// or [`request_from_shell`](CapabilityContext::request_from_shell), spawn a task first.
///
/// For example (from `crux_time`)
///
/// ```rust
/// # #[derive(Clone, PartialEq, serde::Serialize)] pub struct TimeRequest;
/// # #[derive(Clone, serde::Deserialize)] pub struct TimeResponse(pub String);
/// # impl crux_core::capability::Operation for TimeRequest {
/// # type Output = TimeResponse;
/// # }
/// # pub struct Time<Ev> {
/// # context: crux_core::capability::CapabilityContext<TimeRequest, Ev>,
/// # }
/// # impl<Ev> Time<Ev> where Ev: 'static, {
/// # pub fn new(context: crux_core::capability::CapabilityContext<TimeRequest, Ev>) -> Self {
/// # Self { context }
/// # }
///
/// pub fn get<F>(&self, callback: F)
/// where
/// F: FnOnce(TimeResponse) -> Ev + Send + Sync + 'static,
/// {
/// let ctx = self.context.clone();
/// self.context.spawn(async move {
/// let response = ctx.request_from_shell(TimeRequest).await;
///
/// ctx.update_app(callback(response));
/// });
/// }
/// # }
/// ```
///
// used in docs/internals/runtime.md
// ANCHOR: capability_context
pub struct CapabilityContext<Op, Event>
where
Op: Operation,
{
inner: std::sync::Arc<ContextInner<Op, Event>>,
}
struct ContextInner<Op, Event>
where
Op: Operation,
{
shell_channel: Sender<Request<Op>>,
app_channel: Sender<Event>,
spawner: executor::Spawner,
}
// ANCHOR_END: capability_context
/// Initial version of capability Context which has not yet been specialized to a chosen capability
pub struct ProtoContext<Eff, Event> {
shell_channel: Sender<Eff>,
app_channel: Sender<Event>,
spawner: executor::Spawner,
}
impl<Eff, Event> Clone for ProtoContext<Eff, Event> {
fn clone(&self) -> Self {
Self {
shell_channel: self.shell_channel.clone(),
app_channel: self.app_channel.clone(),
spawner: self.spawner.clone(),
}
}
}
// CommandSpawner is a temporary bridge between the channel type used by the Command and the channel type
// used by the core. Once the old capability support is removed, we should be able to remove this in favour
// of the Command's ability to be hosted on a pair of channels
pub(crate) struct CommandSpawner<Effect, Event> {
context: ProtoContext<Effect, Event>,
}
impl<Effect, Event> CommandSpawner<Effect, Event> {
pub(crate) fn new(context: ProtoContext<Effect, Event>) -> Self {
Self { context }
}
pub(crate) fn spawn(&self, mut command: Command<Effect, Event>)
where
Command<Effect, Event>: Stream<Item = CommandOutput<Effect, Event>>,
Effect: Unpin + Send + 'static,
Event: Unpin + Send + 'static,
{
self.context.spawner.spawn({
let context = self.context.clone();
async move {
while let Some(output) = command.next().await {
match output {
CommandOutput::Effect(effect) => context.shell_channel.send(effect),
CommandOutput::Event(event) => context.app_channel.send(event),
}
}
}
});
}
}
impl<Op, Ev> Clone for CapabilityContext<Op, Ev>
where
Op: Operation,
{
fn clone(&self) -> Self {
Self {
inner: Arc::clone(&self.inner),
}
}
}
impl<Eff, Ev> ProtoContext<Eff, Ev>
where
Ev: 'static,
Eff: 'static,
{
pub(crate) fn new(
shell_channel: Sender<Eff>,
app_channel: Sender<Ev>,
spawner: executor::Spawner,
) -> Self {
Self {
shell_channel,
app_channel,
spawner,
}
}
/// Specialize the CapabilityContext to a specific capability, wrapping its operations into
/// an Effect `Ef`. The `func` argument will typically be an Effect variant constructor, but
/// can be any function taking the capability's operation type and returning
/// the effect type.
///
/// This will likely only be called from the implementation of [`WithContext`]
/// for the app's `Capabilities` type. You should not need to call this function directly.
pub fn specialize<Op, F>(&self, func: F) -> CapabilityContext<Op, Ev>
where
F: Fn(Request<Op>) -> Eff + Sync + Send + Copy + 'static,
Op: Operation,
{
CapabilityContext::new(
self.shell_channel.map_input(func),
self.app_channel.clone(),
self.spawner.clone(),
)
}
}
impl<Op, Ev> CapabilityContext<Op, Ev>
where
Op: Operation,
Ev: 'static,
{
pub(crate) fn new(
shell_channel: Sender<Request<Op>>,
app_channel: Sender<Ev>,
spawner: executor::Spawner,
) -> Self {
let inner = Arc::new(ContextInner {
shell_channel,
app_channel,
spawner,
});
CapabilityContext { inner }
}
/// Spawn a task to do the asynchronous work. Within the task, async code
/// can be used to interact with the Shell and the App.
pub fn spawn(&self, f: impl Future<Output = ()> + 'static + Send) {
self.inner.spawner.spawn(f);
}
/// Send an effect request to the shell in a fire and forget fashion. The
/// provided `operation` does not expect anything to be returned back.
pub async fn notify_shell(&self, operation: Op) {
// This function might look like it doesn't need to be async but
// it's important that it is. It forces all capabilities to
// spawn onto the executor which keeps the ordering of effects
// consistent with their function calls.
self.inner
.shell_channel
.send(Request::resolves_never(operation));
}
/// Send an event to the app. The event will be processed on the next
/// run of the update loop. You can call `update_app` several times,
/// the events will be queued up and processed sequentially after your
/// async task either `await`s or finishes.
pub fn update_app(&self, event: Ev) {
self.inner.app_channel.send(event);
}
/// Transform the CapabilityContext into one which uses the provided function to
/// map each event dispatched with `update_app` to a different event type.
///
/// This is useful when composing apps from modules to wrap a submodule's
/// event type with a specific variant of the parent module's event, so it can
/// be forwarded to the submodule when received.
///
/// In a typical case you would implement `From` on the submodule's `Capabilities` type
///
/// ```rust
/// # use crux_core::{Capability, Command};
/// # #[derive(Default)]
/// # struct App;
/// # pub enum Event {
/// # Submodule(child::Event),
/// # }
/// # #[derive(crux_core::macros::Effect)]
/// # pub struct Capabilities {
/// # some_capability: crux_time::Time<Event>,
/// # render: crux_core::render::Render<Event>,
/// # }
/// # impl crux_core::App for App {
/// # type Event = Event;
/// # type Model = ();
/// # type ViewModel = ();
/// # type Capabilities = Capabilities;
/// # type Effect = Effect;
/// # fn update(
/// # &self,
/// # _event: Self::Event,
/// # _model: &mut Self::Model,
/// # _caps: &Self::Capabilities,
/// # ) -> Command<Effect, Event> {
/// # unimplemented!()
/// # }
/// # fn view(&self, _model: &Self::Model) -> Self::ViewModel {
/// # unimplemented!()
/// # }
/// # }
///impl From<&Capabilities> for child::Capabilities {
/// fn from(incoming: &Capabilities) -> Self {
/// child::Capabilities {
/// some_capability: incoming.some_capability.map_event(Event::Submodule),
/// render: incoming.render.map_event(Event::Submodule),
/// }
/// }
///}
/// # mod child {
/// # #[derive(Default)]
/// # struct App;
/// # pub struct Event;
/// # #[derive(crux_core::macros::Effect)]
/// # pub struct Capabilities {
/// # pub some_capability: crux_time::Time<Event>,
/// # pub render: crux_core::render::Render<Event>,
/// # }
/// # impl crux_core::App for App {
/// # type Event = Event;
/// # type Model = ();
/// # type ViewModel = ();
/// # type Capabilities = Capabilities;
/// # type Effect = Effect;
/// # fn update(
/// # &self,
/// # _event: Self::Event,
/// # _model: &mut Self::Model,
/// # _caps: &Self::Capabilities,
/// # ) -> crux_core::Command<Effect, Event> {
/// # unimplemented!()
/// # }
/// # fn view(&self, _model: &Self::Model) -> Self::ViewModel {
/// # unimplemented!()
/// # }
/// # }
/// # }
/// ```
///
/// in the parent module's `update` function, you can then call `.into()` on the
/// capabilities, before passing them down to the submodule.
pub fn map_event<NewEv, F>(&self, func: F) -> CapabilityContext<Op, NewEv>
where
F: Fn(NewEv) -> Ev + Sync + Send + 'static,
NewEv: 'static,
{
CapabilityContext::new(
self.inner.shell_channel.clone(),
self.inner.app_channel.map_input(func),
self.inner.spawner.clone(),
)
}
pub(crate) fn send_request(&self, request: Request<Op>) {
self.inner.shell_channel.send(request);
}
}
#[cfg(test)]
mod tests {
use serde::Serialize;
use static_assertions::assert_impl_all;
use super::*;
#[allow(dead_code)]
enum Effect {}
#[allow(dead_code)]
enum Event {}
#[derive(PartialEq, Clone, Serialize)]
struct Op {}
impl Operation for Op {
type Output = ();
}
assert_impl_all!(ProtoContext<Effect, Event>: Send, Sync);
assert_impl_all!(CapabilityContext<Op, Event>: Send, Sync);
}